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ABSTRACT

Background: Speech decoding, one of the most intriguing BCI applications, opens up plentiful1

opportunities from rehabilitation of patients to direct and seamless communication between human2

species. Typical solutions rely on invasive recordings with a large number of distributed electrodes3

implanted through craniotomy. Here we explored the possibility of creating speech prosthesis in a4

minimally invasive setting with a small number of spatially segregated intracranial electrodes.5

Methods: We collected one hour of data (from two sessions) in two patients implanted with invasive6

electrodes. We then used only the contacts that pertained to a single sEEG shaft or an ECoG stripe to7

decode neural activity into 26 words and one silence class. We employed a compact convolutional8

network-based architecture whose spatial and temporal filter weights allow for a physiologically9

plausible interpretation.10
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Results: We achieved on average 55% accuracy using only 6 channels of data recorded with a single11

minimally invasive sEEG electrode in the first patient and 70% accuracy using only 8 channels of12

data recorded for a single ECoG strip in the second patient in classifying 26+1 overtly pronounced13

words. Our compact architecture did not require the use of pre-engineered features, learned fast and14

resulted in a stable, interpretable and physiologically meaningful decision rule successfully operat-15

ing over a contiguous dataset collected during a different time interval than that used for training.16

Spatial characteristics of the pivotal neuronal populations corroborate with active and passive speech17

mapping results and exhibit the inverse space-frequency relationship characteristic of neural activity.18

Compared to other architectures our compact solution performed on par or better than those recently19

featured in neural speech decoding literature.20

Conclusions: We showcase the possibility of building a speech prosthesis with a small number of21

electrodes and based on a compact feature engineering free decoder derived from a small amount of22

training data.23

1 Introduction24

Brain-computer interfaces (BCIs) directly link the nervous system to external devices [20] or even other brains [44].25

While there exist many applications of BCIs [1], clinically relevant solutions are of primary interest since they hold26

promise to rehabilitate patients with sensory, motor, and cognitive disabilities [35],[14].27

BCIs can deal with a variety of neural signals [42, 33] such as, for example, electroencephalographic (EEG) potentials28

sampled with electrodes located on the scalp [34], or neural activity recorded invasively with intracortical electrodes29

penetrating cortex [26] or placed directly onto the cortical surface [49]. A promising and minimally invasive way to30

directly access cortical activity is to use stereotactic EEG (sEEG) electrodes inserted via a burr hole made in the skull.31

Recent advances in implantation techniques including the use of brain’s 3D angiography, MRI and robot-assisted32

surgery help to further reduce the risks of such an implantation and make sEEG technology an ideal trade-off for BCI33

applications [23]. ECoG strips is another method to achieve direct electrical contact with cortical tissue with minimal34

discomfort to a patient [2].35

The ability to communicate is vital to humans and speech is the most natural channel for it. Inability to speak dramat-36

ically affects the quality of life. A number of disorders can lead to a loss of this vital function, for example, cerebral37

palsy and stroke of the brain stem. Also, in some cases severe speech deficits may occur after a radical brain tissue38

removal surgery in oncology patients. While several technologies have been proposed to restore the communication39

function they primarily rely on brain controlled typing or imaginary handwriting [59] and appear to be practical only40

for severely affected patients. At the same time only in the United States 50 million people suffer from not being41

able to use their speech production machinery properly. A significant fraction of them have pathology not amenable42

by alaryngeal voice prosthesis [30] or "silent speech" devices [17] and require a neurally driven speech restoration43

solution.44

Several successful attempts of BCI based speech restoration have already been made and a significant progress is45

achieved in decoding phonemes [60, 46, 40], individual words [36, 39, 55], continuous sentences [36, 39, 55] and even46

acoustic features [22, 55, 4] followed by the speech reconstruction algorithms using either Griffin-Lim or deep neural47

network algorithms inspired by WaveNet [4].48

These solutions employ a broad variety of machine learning approaches for decoding speech from brain activity data.49

Starting from linear models [60], LDA [5], metric models [22] to deep neural networks (DNN) [36, 39, 55], that in50

general do not require manual feature engineering and can be applied directly to the data, however sometimes operat-51

ing over a set of handcrafted features primarily derived from high-gamma activity. Several different neural network52

architectures have been tried for the speech decoding task: 1) relatively shallow ones consisting of a few convolutional53

or LSTM layers, 2) truly deep architectures with inception blocks [55] or with skip connections exploiting residual54

learning technique [4] as well as those borrowed from the computer vision applications [27, 56], 3) ensembles of DNN55

[39] making final solution more robust. Interestingly, that linear methods demonstrate comparable or, at least, close56

to DNNs decoding quality. Moreover, the latest studies obtained state of the art decoding accuracy using just a few57

layers over a set of handcrafted physiologically plausible features [36, 39]58

The majority of the existing neural speech decoding studies rely on heavily multichannel brain activity measurements59

implemented with massive ECoG grids [39, 36, 4, 3] covering significant cortical area. These solutions for reading60

off brain activity are not intended for a long term use and are associated with significant risks to a patient [29] and61

suffer from a rapid loss of signal quality due to the leakage of the cerebrospinal fluid under the ECoG grid even if it62

is properly perforated. sEEG is a promising alternative whose implantation process is significantly less traumatic as63

compared to that of the large ECoG grids. The use of sEEG has already being explored for the speech decoding task64
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[5] but the reported decoder again relied on a high count of channels from multiple sEEG shafts distributed over a65

large part of the left frontal and left superior temporal lobes which reduces the practicality of the proposed solution.66

A solution capable of decoding speech from the locally sampled brain activity would be an important step towards67

creating a speech prosthesis device.68

Here we explore the possibility of decoding individual words from intracranially recorded brain activity sampled with69

compact probes whose implantation did not require a full blown craniotomy. Our study comprises two subjects im-70

planted either with sEEG shafts or ECoG stripes both via compact drill holes. We decode individual words using71

either 6 channels of data recorded with a single sEEG shaft or the 8 channels sampled using a single ECoG strip. For72

decoding we employed our interpretable CNN architecture [45] augmented with the bidirectional LSTM layer [25] to73

compactly model local temporal dependencies in the internal speech representation that we used as the intermediate74

decoding target. We also compared the ultimate word decoding accuracy achieved with different internal representa-75

tions. Our decoder operated causally using only the data from time intervals preceding the decoded time moment and76

therefore is fully applicable in a real-time decoding setting. Overall our study is the first attempt to achieve accept-77

able individual words decoding accuracy from cortical activity sampled with compact non-intracortical probes whose78

implantation is not likely to cause significant discomfort to a patient and can be done even with local anesthesia.79

2 Data80

In this study we used two datasets collected from two epilepsy patients undergoing planned sEEG and ECoG implan-81

tation for the needs of presurgical mapping. The first patient was implanted bilaterally with a total of 5 sEEG shafts82

with 6 contacts in each with the goal to localize seizure onset zone. The implantation was performed under general83

anesthesia via five 3-mm drill holes. The second patient was implanted with 9 ECoG stripes of 8 contacts each cov-84

ering frontal and inferior temporal lobes. The implantation was performed via several 12 mm drill holes. Figure 185

demonstrates post-surgical CT scans of the two patients. On the second day past the implantation both patients went86

through the active and passive [51] speech mapping procedures that yielded concordant results. In Patient 1 electrical87

stimulation of the 10-11 pair (300 µs, 2.5 mA, 50 Hz) resulted in pronounced speech arrest. The passive speech88

mapping procedure based on computing the mutual information (MI) between the speech envelope and the envelope89

of the gamma-band (60 Hz -100 Hz) filtered sEEG activity resulted into a sharp peak of the MI values for electrodes90

9-12, see Figure 1.a,c. No speech related artifacts were observed when stimulating contacts 11-12 which could be due91

to the very sparing stimulation settings used in this patient - our stimulation current in this patient never exceeded 392

mA which is below the traditionally average current magnitude typically used for speech mapping [15]. Stimulation93

based speech mapping in Patient 2 caused involuntary tongue retraction when applied between electrodes 15-16 and94

the MI profile highlighted contacts 13-15, see Figure 1.b,d. Note that the exact shape of the MI profiles depends on95

the filtering parameters and therefore these plots need to be interpreted carefully. The MI profiles may also confuse96

speech production and one’s own speech perception processes, especially given the observation demonstrated in [32]97

that gamma activity in the auditory cortex accurately tracks the perceived speech envelope and may contribute to the98

observed MI.99

The study was conducted according to the ethical standards of the 1964 Declaration of Helsinki. The participants100

provided written informed consent prior to the experiments. The ethics research committee of the National Research101

University, The Higher School of Economics approved the experimental protocol of this study. After the patients102

signed the appropriate informed consent we asked them to read off the succession of the 6 sentences presented at a103

comfortable pace in randomized order on the computer screen. Each sentence was repeated 30 and 65 times by the104

first and the second patient respectively. The sentences contained on average 4.3 words. Half of the sentences had105

direct and the other half indirect order of words and the majority of words within a single sentence started from the106

same letter. This was done to enable subsequent neurolinguistic analysis of the collected datasets. The sEEG in Patient107

1 was recorded with an 80 channel g.HIamp amplifier. Patient’s 2 ECoG was registered with a 64 channel EBNeuro108

BE Plus LTM device. The sampling rate was set to Fs =19200 Hz (Patient 1) and Fs =4096 Hz (Patient 2). In both109

cases synchronously with neural activity we recorded speech signal measured with Behringer XM8500 microphone.110

3 Methods111

3.1 Data preprocessing112

We first parsed audio data into separate words. To this end, we manually processed several example word alignments113

and then used them to find similar ones by means of the dynamic time warping (DTW) algorithm [8]. Manual check114

shows that the absolute majority of the word alignments were detected correctly. For each word this procedure resulted115

in a list of index pairs corresponding to the start and the end of the word’s utterance. Audio data were processed using116
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Figure 1: Figure 1: a) sEEG contacts extracted from the post-implantation CT scan of the first patient superimposed
over her MRI. Bipolar electrical stimulation of the 10-11 pair (300 µs, 2.5 mA, 50 Hz) resulted in reproducible speech
arrest. b) CT of the second patient who was implanted with nine 8-contact ECoG stripes covering bilateral frontal and
inferior temporal lobes. Bipolar electrical stimulation applied to electrodes 15-16 caused involuntary tongue retraction.
c) Patient 1, mutual information profile between the speech envelope and gamma-band (60 Hz -100 Hz) filtered sEEG
activity shows a sharp peak of the MI values for electrodes 10 and 11. d) Patient 2, mutual information profile between
the speech envelope and gamma-band (70 Hz -100 Hz) shows peak over electrodes 13-15 and in several other locations
of this ECoG strip. The MI profiles between the time-reversed audio stream and original ECoG data is shown in red.
The shadow corresponds to the standard deviation of the MI values estimated using the collection of different 3 minute
long segments. The remaining bumps in the time-reversed MI profile may be due to the inherently rhythmic nature of
the audio stream produced by the patient in response to the sequence of computer instructions.
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Librosa Python software package [38] in order to extract log-mel spectral coefficients (LMSC) [54], mel-frequency117

cepstral coefficients (MFCC) [61] and several derivatives of the linear predictive coding (LPC) coefficients as de-118

scribed below. The sequences of these internal speech representations (ISRs) were downsampled to 1 KHz. We have119

experimented with all listed ISRs , see section 3.3 and Figures 7, 11.b in section 4. In the majority of the reported120

results we used LMSCs as the internal speech representation.121

sEEG and ECoG data went through minimal preprocessing such as causal band-pass FIR filter in the 5-150 Hz fre-122

quency range. Then the data were resampled to 1 kHz sampling rate and the amplitude in each channel was standard-123

ized by subtracting the mean and dividing by the standard deviation. This multichannel data was used as an input of124

our decoding algorithm.125

3.2 Decoding126

In accord with the view expressed in [39] we decided to explore decoding accuracy on the level of individual words.127

On the one hand, words represent a sufficiently low level of detail which permits extension of the obtained solution128

into a broader range of application scenarios. On the other hand, words are less volatile as compared to phonemes129

as the articulation of the latter greatly varies depending on the flanker sounds neighboring the phoneme. This may130

mean that the neural encoding governing the transition between the different states of the articulatory tract may vary131

significantly from case to case depending on the phonetic context a phoneme is encountered in.132

3.3 Internal speech representations133

Most of the ISRs are based on modeling speech signal as produced by an excitation sequence passing through a linear134

time-varying filter [28]. The excitation sequence is the air flow in the larynx and the filter is formed by the articulatory135

tract elements (pharynx, vocal folds, tongue, lips, teeth) whose mutual geometry changes over time.136

Linear predictive coding (LPC) and cepstral analysis are the two principal ways to estimate parameters of such a filter.137

LPC analysis is based on a direct estimate of the auto-regressive model coefficients ai through Burgs method [37].138

However, these prediction coefficients themselves are unstable, as their small changes may lead to large variations in139

the spectrum and possibly unstable filters. In order to decrease such an instability the following several equivalent140

representations are commonly used.141

Reflection coefficients (RC) ki can be computed alongside with prediction coefficients through Burgs method and142

represent the ratio of the amplitudes of the acoustic wave reflected by and the wave passed through a discontinuity.143

Another descriptor, log-area ratio (LAR) coefficients, gi, are equal to the natural logarithm of the ratio of the areas of144

adjacent sections in a lossless tube equivalent of the vocal tract having the same transfer function and can be computed145

from the reflection coefficients as gi = ln
(

1−ki

1+ki

)
.146

Line spectral frequencies (LSF) is another highly efficient speech data compression technique [52] as errors in repre-147

senting one coefficient generally result in a spectral change only around that frequency.148

In what follows we will present our experiments with several ISRs but our final decoding accuracy results are based149

on the use of log-mel spectral coefficients (LMSC).150

3.3.1 Synchronous decoding151

Our goal is to decode specific words from the immediately preceding chunks of neural activity data. The direct152

approach would require gathering a large amount of training data. Instead we developed our decoding solution based153

on the idea described in [36] where the vocoder-like compact ISR is used for regularization purposes during the154

training. However, here instead of using the ISR as a regularizer we employ it as the intermediate target. In other155

words, we first use our compact and interpretable architecture [45] to decode the ISR vector (e.g. M = 40 LMSCs)156

from either sEEG or ECoG based measurements of brain activity. After having trained this ISR decoder optimizing the157

average correlation coefficient between the actual and the decoded ISRs we fix its weights and train a convolutional158

neural network to decode discrete words based on the representations that emerged in one before the last layer of ISR159

decoder network. After training, our two-stage architecture operates as a single network on the minimally preprocessed160

neural activity data and yields discrete classification of individual words at its output.161

For the training word classification task we semi-automatically, see section 3.1, extracted alignment of each word.162

We used only a chunk of neural data that corresponds to the particular word‘s alignment (we do not use information163

of neighborhood words). We also added a "silent" class that corresponds to the intervals of silence between word164

5
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Figure 2: Illustration of the synchronous vs. asynchronous operation mode. In contrast to the synchronous mode, in
the asynchronous regime our general task is to predict the uttered word based on the neural activity data for every time
moment t. See section 3.3.2 for the detailed description.

utterances. To get meaningful accuracy metrics we randomly drop a fraction of "silent" class samples to ensure the165

dataset is class-balanced.166

In this paradigm decoding of ISRs from neural data was performed asynchronously, i.e. on a rolling basis for each167

time point. In the causal regime, each time point was decoded based on the preceding 1000 ms of neural activity data,168

in the anti-causal mode we used 1000 ms window from the immediate future and in the non-causal mode we exploited169

two 1000 ms on both sides of the decoded time-point. The individual words decoding task was then accomplished170

synchronously, i.e. based on the representations cut in the vicinity of each actual utterance.171

3.3.2 Asynchronous decoding172

We have also experimented with a completely asynchronous approach illustrated in Figure 2. In contrast to the syn-173

chronous mode, in the asynchronous BCI setting our general task is to predict the uttered word based on the neural174

activity data preceding the word to be uttered (or the silence interval) at every time moment t. Hypothetically this175

information can then be used for speech generation.176

Our first task here is to infer the probabilities pi(t) for each i−th word + the silence class for each time instance t177

based on the neural activity data [x(t − T ), . . .x(t)] from the preceding time window of length T . Then we smooth178

the obtained probability profiles with 0.2 second long moving average and choose the word (or the silence) based179

on the thresholding the smoothed probability profile p̃i(t). If p̃i(t) peaks and exceeds the threshold we make the180

corresponding decision and "utter" the i−th word. This very word can not be uttered again unless p̃i(t) drops below,181

crosses the threshold and peaks again. See also section 3.5 and Figure 13.a for additional clarifications.182

3.4 Network architecture183

For neural signals to ISR decoding we employed the compact and interpretable convolutional network architecture184

developed earlier for motor BCI purposes [45] and augmented it with a single bidirectional LSTM layer with 30185

hidden units to compactly model temporal regularities. The LSTM layer is followed by the fully connected layer with186

M output neurons each corresponding to a single element of the ISR vector whose temporal profile we are aiming187

to reconstruct from the neural activity data, see Figure 3. Note that unlike [5] we do not specify upfront the feature188

6
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extraction parameters and let our architecture learn them during the training process guided by the optimization of the189

mean (across all ISR elements) Pearson’s correlation coefficient between the original and the decoded ISR timeseries.190

This feature extraction is performed by the adaptive envelope detector (ED) block that comprises a succession of the191

factorized spatial and temporal convolution operations followed by the rectification and smoothing blocks. The ED192

during training can potentially adapt to extracting instantaneous power of specific neuronal populations activity pivotal193

for the downstream task of predicting the ISRs. In the search for the optimum, the ED weights are not only tuned to194

such a target source but also tuned away from the interfering sources [21, 45]. The proper interpretation of the learnt195

ED’s weights allows for subsequent discovery of the target source geometric and dynamical properties.196

In order to measure the quality, we used 6 fold cross validation. In each of the folds we took 5/6 of independent197

sessions and 1/6 for validation, corresponding to 50 minutes and 10 minutes respectively. We used Adam optimiser198

for training with α = 0.0003 learning rate parameter. For training we used the entire train portion of our data, not just199

speech segments. Using only speech intervals worsened the quality of decoding by 15-20%. Our intuition here is that200

non-speech segments are also useful to the training and may serve regularization purposes. Also, hypothetically, the201

brain activity that determines the upcoming utterance happens during the silence interval and therefore not including202

this segment into the training could have detrimental effect on the final classification accuracy.203

In the majority of our experiments we used LMSCs as the ISR, but as described in section 4 we have also experimented204

with the other ISRs outlined in section 3.3, as a target for our first network. After having trained our compact architec-205

ture to decode the ISRs as our intermediate target we used a 2D-convolution ResNet to perform discrete classification206

of 26 words and the silent class using the representations developed in the one before the last layer of the compact207

architecture, see Figure 3.208

Importantly, our experiments show that the use of the internal representations that emerged in the LSTM layer instead209

of the actual decoded ISRs noticeably improves the final word classification accuracy. This observation is inline with a210

similar finding in a completely different domain [19] where the authors advocated the use of multiple separate "views"211

generated by different networks as the input to the final classifier in the image classification task.212

3.5 Performance metrics213

We use correlation coefficient to measure ISR–from–neural activity reconstruction quality. To assess the words decod-214

ing accuracy when operating in the synchronous mode we downsample "silence" intervals to avoid the positive bias215

in the reported numbers and then measure accuracy as the fraction of correctly classified utterances. We report our216

results in the form of 27 × 27 confusion matrices illustrating the proportion of correct and erroneous decoding of 26217

words and the silence class.218

To assess the accuracy when operating in the asynchronous mode we use precision-recall characteristics. As described219

earlier, see Figure 2, for each i−th word we compute smoothed probability profiles p̃i(t) for each time instance t. We220

make a decision about a word being pronounced only at time points corresponding to the local maximums of p̃i(t) that221

cross the threshold θ. The i− th word is decoded if the local maximum of p̃i(t) located above θ also appears to be the222

largest among all other profiles, i.e. p̃k(t), k ̸= i.223

In case the chosen i−th word (or the silence) corresponds to the one that is currently being uttered we mark this event224

as true positive (TP). If after such a detection p̃i(t) remains above the threshold and exhibits another local maximum225

which exceeds the values of all other smoothed probability profiles we will also make a decision to "utter" the i−th226

word. However, in this case this decision will be marked as false positive (FP) even if t belongs to the time range227

corresponding to the actual i−th word, because this results in the duplicated uttering and adds errors to the decoded228

words sequence. We also mark as FP the events when the index of the detected word does not match that of the actual229

pronounced word, see Figure 13.a for the graphical representation of the above description. To compute these PR230

curves we first smooth the probability profiles delivered by the neural network with a simple box-car averaging over231

the 0.2 sec segment. Then, we vary the detection threshold (single value for the entire test data segment) and compute232

the corresponding precision-recall pair. Doing so for a dense grid of thresholds we obtain a threshold independent233

metrics of algorithms performance.234

We represent our asynchronous decoding results in the form of precision-recall curves parameterised by the threshold235

θ applied to probability profiles. Since our decoder uses softmax at its output we smoothly varied threshold θ in (0, 1)236

range to calculate precision and recall indicators for each value of the threshold according to the expressions:237

precision =
TP

TP + FP
, recall =

TP

N
, (1)

where N is the total number of actual utterances performed by the patient.238

7
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The obtained curves characterize the amount of information present at the decoder output and facilitate comparison of239

various solutions. In practice, however, when such an asynchronous BCI is used by a patient the specific value of the240

threshold is to be set based on the user’s preferences.241

3.6 Weights interpretation242

When dealing with overt speech decoding from neural activity data one needs to make sure that the obtained decision243

rule indeed uses neural activity data and does not exploit for decoding the possible artifacts such as electrical currents244

accompanying muscular activity or the acoustic signal leaked into neural data channels via, for example, microphone245

effect [47]. Thankfully, the widely spread over cortex spatial patterns of muscular activity occupying high frequency246

range [16] can be delineated from neural signals whose high frequency components, on the contrary, tend to be247

restricted to spatially compact cortical regions [57, 41]. To do so one needs access to both spatial and frequency248

domain patterns of the activity that appears pivotal to the decoder. Interpretable decision rules facilitate such tests249

for physiological plausibility of the obtained solutions. By extracting spatial and frequency domain patterns from the250

weights of the corresponding layers [21, 45] we can check for the physiological plausibility using domain specific251

knowledge as described above.252

In this work we use our compact convolutional network as the front-end which allows for the theoretically justified253

interpretation of its spatial and temporal convolution weights by extracting spatial and frequency domain patterns254

corresponding to the neuronal populations whose activity is pivotal to the specific downstream task. The details of our255

approach are outlined in [45], next we briefly review the basic ideas behind it.256

The front-end of our network comprises factorized spatial and temporal convolution layers, see Figure 3. During257

training, the spatial and temporal filter weights of each branch not only get tuned to the pivotal neuronal sources but258

also tune away from the interfering signals.259

In terms of spatial processing, that is combining the data from different sensors with specific weights, each branch of260

our adaptive envelope detector (ED), see Figure 3, corresponds to the model studied in [21]. However, each branch261

of the ED contains both spatial and temporal filters. Therefore, as we show in [45], the interpretation of branch’s262

spatial weights needs to be conducted within the context set by the corresponding temporal filter. Since both spatial263

and temporal filtering are linear, interchanging them in the above statement is also valid and thus branch’s temporal264

filter weights interpretation needs to be done taking into account the spatial filter of this branch. More formally our265

approach is summarized below and in Figure 3.266

Our ED processes data in chunks of a prespecified length of N samples. First, assume that the input segment length267

is equal to the filter length in the 1-D temporal convolution layer. Consider a chunk of input data from L channels268

observed over the interval of N time moments that can be represented by matrix X[n] = [x[n],x[n−1], . . .x[n−N+269

1]] ∈ RL×N . Processing of X[n] by the first two layers performing spatial and temporal filtering can be described for270

the m-th branch by a bi-linear product as271

bm[n] = wT
mX[n]hm (2)

where wm ∈ RL is a vector of spatial weights and hm ∈ RN is a vector temporal weights for branch m. The non-272

linearity, ReLu(−1), in combination with the low-pass filtering performed by the second convolutional layer (that273

smooths the rectifier output rm[n]) and extracts the envelopes em[n] of the rhythmic signals.274

We assume that upon training the spatial unmixing coefficients and temporal filter impulse responses implement op-275

timal processing and tune each branch of our architecture to a specific neuronal population with its characteristic276

geometric and dynamical properties. But it is crucial to realize that under Wiener optimal condition each branch not277

only gets tuned to a specific population but also tunes itself away from the interfering activity. As detailed in [45],278

assuming that channel timeseries are zero-mean random processes the underlying neuronal population topographies279

can be found as280

gm = E{ym[n]yT
m[n]}w∗

m = Ry
mw∗

m (3)

where Ry
m = E{ym[n]yT

m[n]} is a L× L spatial covariance matrix of the temporally filtered data ym[n] = X[n]hm,281

L is the number of input channels. Thus, when interpreting individual spatial weights corresponding to each of the282

M branches of the architecture shown in Figure 3 one has to take into account the temporal filter weights h∗
m of this283

m−th branch.284

The temporal weights should be interpreted in a similar way, i.e. taking into account the corresponding spatial fil-285

ter. Assuming that channel timeseries are zero-mean random processes, N is the number of taps in the temporal286

8
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Figure 3: The architecture based on [45] and adapted for speech classification task. We used the same envelope
detector technique to extract robust and meaningful features from the neuronal data. We then used the LSTM layer to
account for the sequential structure of the speech ISR (e.g. LMSC) and finally decoded it with a fully connected layer
over the LSTM hidden state (oij on the figure). A separate 2D convolutional network was trained and used to classify
separate words from the activity of thus pretrained LSTM.

convolution filter h∗
m, the temporal pattern is given by287

qm = E{vm[n]vT
m[n]}h∗

m = Rv
mh∗

m (4)

where Rv
m = E{vm[n]vT

m[n]} is an N × N tap covariance matrix of an N -samples long chunk of spatially filtered288

data vm[n] = X[n]Twm = [vm[n], vm[n− 1, . . . , vm[n−N + 1]]T .289

As shown in [45] if we relax the assumption about the length of the data chunk being equal to the length of the temporal290

convolution filter we can arrive at Fourier domain representation of the second-order dynamics of the neuronal popula-291

tion the m−th branch is tuned to. The power spectral density Qm(f) of this population’s activity can be derived from292

the power spectral density (PSD) Pvm(f) of the spatially filtered input data vm[n] and the Fourier transform Hm(f)293

of the temporal weights vector hm(f) as in (5):294

Qm(f) = Pvm
(f)Hm(f) (5)

The important distinction that contrasts our weights interpretation approach from the methodology used in the majority295

of reports utilizing neural networks with separable spatial and temporal filtering operations is that our procedure296

accounts for the fact that during training the spatial filter formation is taking place within the context set by the297

corresponding temporal filter, and vice versa. Also, in [45] the authors for the first time introduced the notion of298

the frequency domain pattern Qm(f) of neuronal population’s activity. Note that Qm(f) vs. Hm(f) has the same299

difference as the spatial pattern vs. spatial filter weights which was brilliantly illustrated earlier in [21].300

Using the expressions 3 and 5 we can explore the corresponding spatial and frequency domain patterns of each trained301

branch (head) of our decoding architecture. If our architecture latched to the data of neuronal origin then the spatial302

patterns of larger extent should correspond to sources with frequency domain patterns localized to lower frequency303

ranges and vice versa. Such mutual relationship if observed may reassure that our decoder relies on genuinely neuronal304

information.305

4 Results306

4.1 Microphone effect307

To exclude the possibility of data leak associated with electric contacts capacitance change driven by the acoustic308

speech signal vibes, also known as microphone effect [48], we compared spectral content of the recorded neural data309

and that of the speech signal in 0-2000 Hz frequency range. Time-frequency diagrams corresponding to a typical310

20 seconds long segment of a representative channel of neuronal data and the acoustic signal are shown in Figure 6311

for two patients. Visual analysis does not reveal the characteristic banded structure of speech signal (lower row) in312

the time-frequency profiles of the neuronal data (top row). To perform an objective assessment for all channels of313

neural data we calculated the correlation coefficient between the temporal profiles of the instantaneous power in each314

frequency band of neural and acoustic data. We have then used a permutation test to assess statistical significance of the315

observed correlation coefficients to be non-zero. To this end we split the acoustic data into segments corresponding to316
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Figure 4: Log-spectrograms for audio and neural data in the electrode with the strongest audio-neural correlations
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Figure 5: Pairs (channel, frequency) with rejected H0 hypotheses that correlation is zero at α = 0.05. See more
description in the corresponding section.

word utterances and randomly shuffled 10000 times the order of such segments to destroy the original correspondence317

between the neuronal and acoustic data in order to compute surrogate correlation coefficient distribution for each318

(channel, frequency) pair. Then we have computed the asymptotic p−values as the fraction of times when the surrogate319

correlation coefficients appeared to be greater than the correlation coefficients observed in the original non-shuffled320

data. To correct for multiple comparisons due to running a massive set of tests for all (channel, frequency) pairs we321

used the BH FDR correction procedure [9] and obtained a set of adjusted p−values. Those (channel, frequency) pairs322

whose corresponding adjusted p−values fall below 0.05 are highlighted in Figure 5 and do not show any systematic323

segregation in neither of the two patients.324

The above analysis assures that there were no identifiable effects of acoustic information leakage into the data channels325

carrying neural activity signals.326

4.2 Decoding internal speech representation327

In this study we mainly focused on the contacts confined to a single stereo-EEG shaft in Patient 1 or a single stripe328

in Patient 2. To select the specific contiguous block of contacts we have computed mutual information between the329
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Figure 6: Example of a true and decoded from neural activity log mel-spectrograms.

speech envelope and the envelope of the high-gamma band cortical activity signal for each channel, see Figure 1 c)330

and d) panels. We have observed a clear delineation in the amount of mutual information between different electrodes.331

Reassuringly, high MI values closely matched electrodes whose stimulation led to speech arrest in Patient 1 and tongue332

contraction in Patient 2, see Figure 1. Red curves represent the amount of MI computed using the mutually reversed333

neuronal and audio sequences.334

Some remaining values of the MI in the reversed sequence can be explained by the rhythmic structure of the computer335

instructions to utter that the patients followed. Although the MI profiles are sensitive to the filtering option, see section336

2, we still consider it a useful tool for delineation between task related and unrelated channels. As we show in Figure337

11 exploiting the MI informed selection of channel groups yields the best decoding accuracy that matches the value338

achieved with the entire set of channels.339

As evident from Figure 7 our compact architecture using only 6 sEEG channels form a single sEEG shaft achieved340

about 65% mean correlation over M = 40 LMSCs in Patient 1 and almost 60% for Patient 2 with 8 channels from a341

single ECoG stripe. These accuracy values in decoding internal speech representation are comparable to those reported342

in [4] where significantly greater count of data channels collected by multiple sEEG shafts was used. An example of343

the original and decoded 40 LMSCs is shown in Figure 6 for two patients.344

We have also experimented with decoding several other internal speech representations (ISRs) as shown in the left345

panel of Figure 7. Each color corresponds to a specific ISR method. For both patients we display the ISRs using the346

same order. Interestingly, in both patients LMSCs appeared to be decoded best, PCs followed and got closely matched347

by the MFCCs. The reflection coefficients had the worst decoding accuracy. As we will show next, however, this order348

is not retained when we use words classification accuracy as a criterion. Most likely the mean correlation coefficient349

between the true and decoded ISRs is determined by their specific statistical properties and the extent to which the350

fluctuations in their coefficients reflect changes between the silence and speech intervals. To explore this we have351

computed masked correlation coefficients using only the intervals when the actual speech was present. As expected352

the mean correlation coefficient dropped significantly and the order in which the different ISRs lined up changed as353

well, see the right panel of Figure 7. LMSCs on average still remained among the ISRs with top decoding accuracy354

followed by the LPC coefficients and MFCC.355

Each ISR is a vector and instead of the average values shown in Figure 7 in Figure 8 we present the decoding accuracy356

values achieved for each of the elements in the three ISRs with the best average decoding accuracy: LMSCs, MFCCs357

and LPC coefficients. Here we also observe similar tendencies for both patients. For each we show the histograms of358

correlation coefficients computed over the entire data range (blue) and only over speech intervals (orange).359

The achieved so far ISR decoding accuracy does not yield intelligible speech when, for example, the recovered LMSC360

sequence is converted back into the sound. Nevertheless, as we will show next the decoded LMSC profiles and other361

ISRs support the classification of discrete words sufficiently well.362

4.3 Words decoding in synchronous mode363

We achieved 55% accuracy using only 6 channels of data recorded with a single minimally invasive sEEG electrode in364

the first patient in classifying 26+1 overtly pronounced words (3.7% chance level). The left panel of Figure 9 shows365

the corresponding confusion matrix and the individual decoding accuracy values for each word in Patient 1.366
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Figure 7: Comparison of the decoding accuracy achieved for different ISRs: LPC - linear predictive coding coeffi-
cients, LSF - line spectral frequencies, RC - reflection coefficients, LAR - log-area ratios, LMSCs - log-mel spec-
trograms, MFCC - mel-frequency cepstral coefficients. To test for statistical significance of the observed differences
in decoding quality, we performed Wilcoxon signed-rank tests with Bonferroni correction: (*) - p-value is less than
0.05, (**) - 0.01, (***) - 0.001. We added this information to the caption. The left panel corresponds to the corre-
lation coefficients between the actual and decoded temporal profiles computed over the entire time range of the test
data segment. Statistically significant differences for: Patient 1 - LMSC with RC/LPC/LAR/LSF/MFCC (***), RC
with LPC/LSF/MFCC (***), RC with LAR (*), LPC with LAR/LSF (***), MFCC with LAR/LSF (***). Patient
2 - RC with LPC/LAR/LSF/MFCC/LMSC (***), LAR with LPC/MFCC/LMSC (***), MFCC with LMSC (***),
LMSC with LPC/LSF (**), LPC with MFCC (*). In the right panel the correlation coefficient is computed only over
the time intervals where the actual speech was present. Statistically significant differences for: Patient 1 - LMSC
with RC/LPC/LAR/LSF/MFCC (***), RC with LPC/MFCC (***), LPC with LAR/LSF (***), MFCC with LAR/LSF
(***). Patient 2 - RC with LPC/MFCC/LMSC (**), LSF with MFCC/LMSC (**), LAR with RC/MFCC (*), LPC
with LSF (*).
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Figure 8: Correlation coefficient of predicted and actual ISR elements for two patients (rows). The two overlaid
histograms correspond to the correlations computed over the entire time range (blue) and only over the speech intervals
(orange).

Spatial characteristics of the first three branches corresponding to the most pivotal neuronal population are shown in367

the left column of Figure 10.a. We can see that dominantly the activity of these pivotal populations is mapped onto368
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Figure 9: Confusion matrix of classified words for patient 1 and patient 2. Words list: 0. silence, 1. zhenia, 2. shiroko,
3. shagaet, 4. zheltykh, 5. shtanakh, 6. shuru, 7. uzhalil, 8. shershen, 9. lara, 10. lovko, 11. krutit, 12. rul, 13.
levoi, 14. rukoi, 15. liriku, 16. liubit, 17. lilia, 18. babushka, 19. boitsia, 20. barabanov, 21. belogo, 22. barana,
23. bolno, 24. bodaet, 25. beshenyi, 26. byk. In the bottom we show the individual word decoding accuracy values,
corresponding to the diagonal of the confusion matrix

.

electrodes with indices 9 to 12. This corroborates with the results of an active speech mapping procedure where we369

found that bipolar electrical stimulation of electrodes indexed 10 and 11 resulted in transient speech arrest as shown370

in Figure 1 a). Frequency domain patterns presented next to the corresponding spatial patterns illustrate physiological371

plausibility. First of all the top branch has activity not only in the lower frequency range but also in the traditional372

gamma band and this branch corresponds to the spatially compact pattern highlighting a single channel with index 12.373

At the same time, the two branches are characterized by frequency domain patterns concentrated over relatively lower374

frequency range. Interestingly, and in agreement with [57] these branches have relatively more spread out spatial375

patterns as compared to that of the first branch.376

Similar analysis is shown for Patient 2 in the right panel of Figure 9 and Figure 10.b. In this patient implanted with377

ECoG grids we have achieved on average 70% of words decoding accuracy. We can also observe a striking trend378

where spatially more compact populations are characterized by the activity in the higher frequency bands.379

4.3.1 Weights interpretation380

The advantage of the DNN based approach is that it does not require manual feature engineering, however, these381

methods are typically over-parameterized and exhibit greedy behaviour. Such a greediness in the neurophysiological382

context may result in the network latching on signals of non-neuronal origin. This problem can be monitored in383

compact, domain knowledge driven architectures equipped with a proper weights interpretation approach. To this end384

we have applied the recently developed approach detailed in [45]. Our goal here is to explore the mutual relation385

between the spatial and frequency domain patterns each branch of our compact DNN architecture got tuned to during386

the training process. This analysis will also help us to exclude the fact that our network exploits muscular activity387

associated with the speech production process. The principles behind this analysis have been briefly outlined in388

section 3.6.389

The result of applying our weights interpretation procedure to each of the three branches of our compact DNN is shown390

in Figure 10. We illustrate both spatial (left column) and frequency domain (right column) patterns of the neuronal391

populations for each of the three most significant branches of our network. The frequency domain plot also contains392
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Figure 10: Theoretically justified weights interpretation applied to the most significant branches of the architecture
in Figure 3. Orange trace in the top panel shows the power spectral density pattern of the activity of the neuronal
population this branch is tuned to. The left panel shows the spatial pattern of this population. We can conclude that
this source dominantly projects onto the 12th contact located at the lateral part of the sEEG electrode (shaft), see
Figure 1 a). Similar picture is observed for the second patient present in the two right columns. Here we also observe a
striking trend of spatially more compact populations being characterized by the activity in the higher frequency bands.

the curves corresponding to the power spectral density (PSD) of the input timeseries obtained by the spatial filtering393

of the multichannel data at the input of the network and the PSD of the branch’s output timeseries.394

From the top row of patterns corresponding to the first branch of the decision rule for Patient 1 we can see that the395

PSD occupies a high 100-200 Hz frequency range and the corresponding spatial pattern is confined to only a single396

channel with index 12. At the same time the second branch with a much more spread out spatial pattern occupying397

channels 9-11 is characterized by the PSD confined to the lower 10-40 Hz frequency range. The reciprocal space-398

frequency relation that hallmarks neuronal activity and distinguishes it from the electro-muscular artifacts is also very399

well pronounced in the second patient. Moving downwards we observe the gradual growth of the spatial spread with400

the PSD frequency range migrating from the higher to lower frequency range.401

Combined together with domain knowledge [12, 13, 11, 57] highlighting reciprocal space-time relationship in the402

observed cortical activity patterns and phenomenological observations [16] on the properties of the electromuscular403

activity and its representation on the cortex the observed combinations of the spatial and PSD patterns allow us to404

make a conclusion regarding the neuronal origin of the data our decoder latched on during the training process. The405

analysis for microphone effect reported in section 4.1 also excludes the possibility that the decoding is done based on406

the acoustic signal leaking into neuronal data channels.407

In this patient we have witnessed certain discrepancy between the stimulation based mapping and the electrode indexes408

that resulted from our weights interpretation procedure where electrode 12 was highlighted, yet speech production409

problems were registered when stimulating contacts 10-11, but see Figure 1 a,c. This could have resulted from the410

very sparing stimulation settings used in this patient - our stimulation current never exceeded 3 mA which is below the411

traditional average current magnitude typically used for speech mapping [15].412

For Patient 2, weights interpretation of the three most important branches of our network show the primary involvement413

of electrodes 13, 14 and 15 into the decoding process which is partially congruent with stimulation based speech414

mapping, see Figure 1.b,d, where we found that the stimulation applied between 15-16th electrodes yielded reliable415

tongue retraction (back from the requested tongue protrusion state). In this patient we also observe a very pronounced416

reciprocity in the space-frequency patterns. As shown in the right panel of Figure 10 moving from the top to the417

bottom we observe how a very compact spatial pattern transitions into a more spatially spread out one. At the same418

time, the corresponding frequency domain patterns tend to move leftwards so that the most compact spatial pattern419

corresponds to the activity with the highest central frequency. This is the expected property of neural activity that has420

been highlighted earlier in several studies [41, 57].421

Approximate MNI coordinates of electrodes found to be pivotal for decoding in both patients are given in Table 1.422

In Patient 1 stereo-EEG electrodes with the majority of contacts located deep in the sulci of the left operculum. The423

location corresponds to Brocas region whose activity is traditionally registered in a broad range of language related424

14



A PREPRINT - OCTOBER 21, 2022

a) b)

patient 1 patient 2
patient

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

***

***

***
***

**

ED-Net + LSTM based
ResNet + LSTM based
ResNet only Based

patient 1 patient 2
patient

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

*
*

*
*

RC
LPC
LAR
LSF
MFCC
LMSC

c) d)

patient 1 patient 2
patient

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

*
***

**
***

causal
anti-causal
non-causal

09-12 all
01-06

07-12
13-18

19-24
25-30

channels

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

Patient 1

13-15all
01-08

09-16
17-24

25-30
31-36

37-42

channels

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Patient 2

Figure 11: Comparative analysis. To test for statistical significance of the observed differences in ISR reconstruction
fidelity, we performed Wilcoxon signed-rank test with Bonferroni correction: (*) - p-value is less than 0.05, (**) - 0.01,
(***) - 0.001. We added this information to the graph. In cases the brackets appeared to overload the plot we placed
the statistical testing results in this caption. a) Comparison of different neural network models. b) Comparison of
different possible intermediate sound representation, LPC - linear predictive coding coefficients, LSF - Line Spectral
Frequencies, RC - reflection coefficients, LAR - log-area ratios, LMSC - log-mel spectrogram coefficients, MFCC -
mel-frequency cepstral coefficients. c) Comparison of different possible lag. d) Comparison of decoding quality for
different subset of channels. Statistically significant differences for: Patient 1: 09-12 with 01-06/13-18/19-24/25-30
(***), 09-12 with all (*), all with 01-06/13-18/19-24/25-30 (***), 01-06 with 13-18/19-24/25-30 (***), 07-12 with
13-18/19-24/25-30, 07-12 with 01-06 (**) . Patient 2: 13-15 with 01-08/17-24/31-36/37-42 (***), all with 01-08/17-
24/31-36/37-42 (***), 09-16 with 01-08/17-24/31-36/37-42 (***), 17-24 with 37-42 (**), 17-24 with 01-08 (*), 25-30
with 01-08/31-36/37-42 (***), 25-30 with 17-24 (**), 25-30 with 13-15/all/09-16 (*)

tasks. For patient 2 the pivotal electrodes cover the inferior portion of the precentral gyrus. Our stimulation results in425

Patient 2 do not quite match the anatomical location and functionally better correspond to the ventral precentral gyrus,426

the structure located inferior to the precentral gyrus and known to house the tongue motor area. This could be due427

to atypical organization of the cortex in this patient. Locations of electrodes in both patients are remote with respect428

to the belt area (MNI: -58, -28, 13) whose gamma-band activity was shown to reliably track the perceived speech429

envelope (Kubanek et al., 2013). These functional and anatomical arguments together with the causal approach to the430

ISR decoding reduce the chance that our decoder operation is based on the subjects own speech perception.431

In the above we have analyzed spatial and frequency domain patterns of the neuronal populations that were found to432

be pivotal to the ISR decoding task and forming the internal representations to be subsequently used as an input to our433

words classification network.434

For the front-end network weights interpretation to make sense in the context of the word classification task we also435

need to demonstrate the dependence of the final word classification accuracy on the fidelity of the individual ISR436

decoding achieved by the front-end network. To this end we have performed additional experiments. We rerun the437

training and terminated it at different points to yield various ISR decoding accuracy and then subsequently trained438
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Patient 1, stereo-EEG electrode Patient 2, ECoG strip
Electrode index MNI Coordinates Electrode index MNI Coordinates

9 -40,19,4 13 -65,-24,43
10 -45,20,4 14 -66,-18,39
11 -50,20,4 15 -67,-13,34
12 -53,21,4 25 -35,17,-46

30 -56, 8,-21
Table 1: MNI coordinates of pivotal electrodes
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Figure 12: Dependence of the final word classification accuracy on the decoded vs. true ISR correlation. Red line is
the third order trend fitted to the data to facilitate visual perception.

our word classification network. In Figure 12 we show the observed dependence of the words classification accuracy439

on the correlation coefficient between the actual and the decoded ISRs (LMSC, MFCC and LPC). Indeed for each440

ISR we witness the direct relation between its decoding fidelity as measured by the correlation coefficient and the441

corresponding discrete words classification accuracy.442

4.4 Comparative analysis443

In this work we employed the compact architecture, see Figure 3, that comprises multiple branches of envelope detec-444

tors (ED) of spatially filtered data whose output is fed into the LSTM layer followed by a fully connected network.445

This architecture uses factorized spatial and temporal filters that get adapted during training and allows for interpreta-446

tion of the filter weights into the spatial and spectral patterns as demonstrated in Figure 10. These patterns can then be447

used to infer location and dynamical properties of the underlying neuronal populations.448

Here we compared this network to several other architectures. We found that out of several neural networks only449

Resent-18 offers a comparable, although significantly worse, performance when used instead of the ED block in our450

architecture, see Figure 3. The LSTM layer also appears to be very useful in capturing the dynamics of features451

extracted either with ED or ResNet blocks, see Figure 11.a. We hypothesize that this situation may be caused by the452

adequate balance in the number of parameters to be tuned for the ED-based network and the amount of data available453

for training as compared to several other more sophisticated architectures.454
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Words decoding accuracy results reported in Figure 9 correspond to the case when 40 LMSCs were used to train the455

front-end ISR decoder network, see Figure 3. We have also experimented with several other ISRs as described in456

section 3.3 and presented the results in Figure 11.b.457

Interestingly, the differences in the individual ISR decoding fidelity, see Figure 7, does not transfer into the corre-458

sponding words classification accuracy where all of the ISRs yield more or less comparable performance. A possible459

explanation here could be that some ISRs in addition to the information regarding the sequence of the articulatory tract460

configurations (corresponding to a specific sequence of phonemes and invariant to the pitch, timbre, loudness, etc.)461

contain the information about purely acoustic features of the utterance such as fundamental frequency, voice timbre,462

local volume, etc., which could be easier to decode than the articulatory tract parameters critical for the words classifi-463

cation task. The subsequent words classification largely requires only the first type of information and therefore may464

yield comparable words classification performance for the different ISRs as long as all of them contain this essential465

information.466

The reported ISR and words decoding accuracy results are presented for the causal processing mode, i.e. when the467

data window strictly precedes the time-point the prediction is made for. We have also experimented with anti-causal468

(the window is strictly in the future w.r.t. to the predicted time-point) and non-causal (when the data window covers469

pre- and post- intervals around the point in question). These results are plotted in Figure 11.c. In both patients we see470

the best performance when the data-window is allowed to be located both in the future and in the past w.r.t. the point471

to be predicted. This result is expected since in the non-causal setting the algorithm can use information about the472

cortical activity that occurs in response to the uttered word.473

In this work we mainly focused on decoding from a small number of contacts confined either to a single stereo-EEG474

shaft or an ECoG stripe. In both cases the electrodes can be implanted without a full-blown craniotomy via a drill hole475

in the skull. We have chosen the particular subset of contacts using the mutual information (MI) metric, see Figure476

1 which closely matched stimulation-based mapping results. Both of our patients were implanted with several sEEG477

shafts or ECoG stripes, see Figure 1. In Figure 11.d we show the results of a similar analysis but using other subsets478

of electrodes located on the other shafts or stripes. Noteworthy is that MI based selection yielded significantly better479

performance as compared to the other spatially segregated electrode groups.480

According to Figure 1.d electrodes 25-27 also show the increased MI values between the ECoG and acoustic envelope.481

This corroborates with the results in Figure 11.d where the use of the stripe with these electrodes yielded the second482

best decoding accuracy. The stripe is placed in the inferior region of the left anterior temporal cortex and the MNI483

coordinates of the first (25) and the last (30) electrodes from this stripe are given in Table 1. According to [53] these484

areas appear to be active during the implicit comprehension of spoken and written language. Given that the sentences485

we used slightly deviate from the standard sentences used in daily life and are likely to require some additional effort486

and very mild emotional response beyond just mechanical reading. According to Figure 1 of [24], our electrodes487

25-30 fall in the area 6e that appears to host representations of emotional words, see their Table 2. Finally, based on488

[10], the temporal pole region where electrodes 25-30 are placed could be a part of the network that links temporal489

pole with posterior structures to support thematic semantic processing during language production. When interpreting490

these results we can not discount the mounting evidence that speech production and comprehension share neural491

representation and speech production processes are not only localized to the left hemisphere but also involve bilaterally492

distributed linguistic network [50] which explains advanced decoding accuracy in the speech decoding setting reliant493

on bilaterally distributed electrodes [23].494

4.5 Asynchronous decoding of words495

Traditionally, BCI can be used in two different settings: synchronous and asynchronous. In the synchronous setting496

a command is to be issued within a specific time window. Usually, a synchronous BCI user is prompted at the497

start of such a time window and has to produce a command (alter his or her brain state) within a specified time frame.498

Therefore, the decoding algorithm is aware of the specific segment of data to process in order to extract the information499

about the command. In the asynchronous mode the BCI needs to not only decipher the command but also determine500

the fact that the command is actually being issued. The delineation between synchronous and asynchronous modes is501

most clearly pronounced in BCIs with discrete commands implying the use of a categorical decoder.502

In BCIs that decode a continuous variable, e.g. hand kinematics, such delineation between synchronous and asyn-503

chronous modes is less clear. The first part of our BCI implements a continuous decoder of the internal speech504

representation (ISR) features. Should this decoding appear of sufficient accuracy it could have been simply used as505

an input to a voice synthesis engine. Such a scenario has already been implemented in several reports [4, 3] but these506

solutions use a large number of electrodes which may explain better quality of ISR decoding. In our setting we aimed507

at building a decoder operating with a small number of ecologically implanted electrodes and decided to focus on508
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Figure 13: a) For each i−th word we compute smoothed probability profiles p̃i(t) for each time instance t. The
decision is then made about a word being pronounced only at time points corresponding to the local maximums of
p̃i(t) that cross the threshold θ. In case the chosen i−th word matches the one that is currently being uttered we mark
this event as true positive (TP). If after such a detection p̃i(t) remains above the threshold and exhibits another local
maximum which exceeds the values of all other smoothed probability profiles the i−th word is "uttered" again, but
this event is marked as false positive (FP) even if t belongs to the time range corresponding to the actual i−th word.
b) PR curves for asynchronous words decoding task. As in regular binary classification problem, in order to get PR
curves we vary the detection threshold from 0 to 1 and for every fixed threshold value we compute the corresponding
precision-recall pair. The detection threshold affects how many words will be «uttered» by our algorithm. Low
detection threshold "utter" a lot of words and lead to high recall and low precision. And vice versa, high detection
threshold "utter" only high confident words and lead to low recall and high precision. Note that definition of precision
and recall is slightly different from conventional binary classification PR curves (see equation 1, figure 13.a and section
3.5 for details). We also show a chance level PR curve.

decoding individual words. We first used the continuously decoded ISRs to classify 26 discrete words and one silence509

state in the synchronous manner. To implement this we cut the decoded ISR timeseries around each word’s utterance510

and use them as data samples for our classification engine.511

To gain insight into the ability of our BCI to operate in a fully asynchronous mode we performed the additional analysis512

as described in section 3.3.2. Figure 13 .b illustrates the performance of our BCI operating in a fully asynchronous513

mode when the decoder is running over the succession of overlapping time windows of continuously decoded ISRs514

and the decision about the specific word being uttered is made for each of such windows, see Figure 2. To quantify the515

performance of our asynchronous speech decoder we used precision-recall curves as detailed in section 3.5 and Figure516

13.a.517

Although the observed performance significantly exceeds the chance level, it is not yet sufficient for building a full518

blown asynchronous speech interface operating using a small number of minimally invasive electrodes. In our view and519

based on the experience with motor interfaces, specific protocols to train the patient including those with immediate520

feedback to the user [6] are likely to significantly improve the decoding accuracy in such systems which will boost the521

overall feasibility of minimally invasive speech prosthetic solutions.522

5 Conclusion523

We have explored the possibility of building a practically feasible speech prosthesis solution operating on the basis of524

neural activity recorded with a small set of minimally invasive electrodes. Implantation of such electrode systems does525

not require a full craniotomy and combined with algorithmic solutions equipped with a joint human-machine training526

protocol may form a basis for the future minimally invasive speech prosthesis.527

There exist several reports exploiting intracortical activity recorded with Utah array like systems for speech prosthesis528

purposes [60, 58, 18]. These recordings give access to the activity of individual neurons but remain potentially harmful529

to the cortical tissue. In contrast, stentrodes [43], electrodes located inside blood vessels and implanted using stent530

technology, offer a potentially plausible solution for obtaining high quality brain activity signals without any kind of531

craniotomy. These electrodes, however, unlike the intracortical arrays, register the superposition of neuronal activity532

stemming from a large number of neuronal populations. Also, unlike the ECoG grids used in the majority of speech533
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prosthesis research these stent electrodes are confined to a relatively small volume. The signals measured in our setting534

with a small number of spatially confined sEEG and ECoG contacts can be considered as a proxy of the data collected535

by the stentrodes and the signal processing approaches developed here could be potentially applied to stentrode data536

in order to to pave the road towards craniotomy-free speech BCI solutions.537

We build our decoder using a two-step procedure. First we construct an interpretable architecture to decode the538

continuous internal speech representation (ISR) profiles from the neural activity and fix the weights of this compact539

neural network. In this case the particular ISR (LMSC, MFCC, LPC coefficients) is merely a target to train this540

front-end network. Then, when applying this network to neural activity data we take its hidden state before the last541

fully connected layer and use its activation as an input to the discrete classifier to distinguish between neural activity542

patterns corresponding to 26 words and one silence state. This approach resembles [36]. However, based on our543

experiments we found that replacing concurrent training of two classifiers with such a two step process improved the544

achieved decoding accuracy in our setting.545

We have also paid particular attention to interpreting the obtained decision rule. Our main concern here was to exclude546

the possibility of using non-neural activity patterns in the overt speech decoding setting. To do so we exploited the547

concept of spatial and frequency domain patterns that pertain to the neuronal populations that each of the branches548

of our front-end network got tuned to. Several reports [16, 31, 7] explored the spatial and frequency domain patterns549

that manifest muscular activity in the subdural space. These are typically hallmarked with high-frequency spectra550

and large spatial extent which is the opposite to neural activity where we expect higher frequency activity to be more551

spatially confined as compared to the signals in the lower frequency bands. We applied the methodology described in552

[45] to recover spatial and frequency patterns of the underlying pivotal activity and found that they well adhered to the553

described properties of neural activity. We also did not find any evidence of microphone effect [47] in our data.554

The accuracy we obtained in the synchronous mode appears sufficient to make a system usable in a real-life scenario555

when each word is "uttered" within a specific time slot, starting, for example, with a beep prompt. The extent to which556

the observed accuracy is transferred to a patient who lacks the ability to speak greatly depends on the specific medical557

case. Although we explored various arrangements of the data time window around the decision point our main results558

correspond to the decoder operating causally, i.e. utilizing neural activity strictly from the past which is expected not559

to depend on the perceived speech, see also [32]. This ensures that the observed accuracy can potentially transfer to560

real patients with speech function deficits given the appropriate patient training tools are developed.561

Asynchronous BCI setting is clearly a more natural one for speech prosthesis operation. We experimented with our562

decoder in this scenario and observed a reasonable performance which however, needs to be improved before it can563

be used in practice. We recall 40% moments when one of the 26 words is uttered and in 60% of cases we correctly564

guessed this word out of 26 possible alternatives.565

The use of a language model is known to improve speech decoding accuracy [55] and can also be added to improve the566

performance of the final consumer solution. However, our goal here was to assess to which extent the neural activity567

alone can be informative with regard to individual words classification and therefore we have deliberately refrained568

from using any language model in this study.569

Overall our study showcases the possibility of building speech prosthesis with a small number of electrodes and based570

on a compact feature engineering free decoder derived from several tens of minutes worth of training data. To be571

translated into clinical practice this solution needs to be augmented with patient training procedures and a methodology572

to non-invasively determine implantation sites that would yield the best speech decoding accuracy.573
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